近年来,太阳能、风能等可再生能源技术快速发展,然而这些发电方式受自然因素影响较大,具有明显的随机性和波动性,目前弃风、弃光等现象凸显。储能技术是将随机波动能源变为友好能源的关键,其技术变革对推动能源革命具有重要意义。水系有机液流电池以水溶性有机氧化还原活性分子作为电解质,其安全性高、成本低廉、性能易于调控且对环境友好,是一种极具发展前景的新型大规模储能技术。在众多液流电池有机活性物质中,氮氧自由基类活性材料原料丰富、价廉易得且具有相对较高的氧化还原电位(>0.8 V vs. RHE),是一种综合性能优异的正极材料。然而,在充放电过程中氮氧自由基类分子易于发生副反应,进而导致电池容量快速衰减,使用寿命缩短。此外,活性物质的分子结构和电化学性能之间的内在关联尚不清晰,在分子结构设计方面也缺乏理论指导。
针对上述问题,西安交通大学材料学院宋江选教授团队从分子结构调控入手,设计合成了五元环吡咯类氮氧自由基衍生物,结合密度泛函理论模拟及实验分析,首次揭示了该类分子氧化还原电位与N-O自由基端电荷布局之间的内在关联。相比于传统的六元环氮氧自由基活性物质,五元环双键结构吡咯啉氮氧自由基(CPL)的氧化还原电位高达0.96 V (vs. RHE),所组装水系有机液流全电池CPL/BTMAP-Vi展现出1.31 V的开路电压,在500次充放电循环内容量保持率高达99.96%/圈。这一研究工作极大拓展了氮氧自由基衍生物的选择范围,为此类材料在大规模储能领域的应用奠定了理论基础。研究结果以“Five-Membered Ring Nitroxide Radical: A New Class of High-Potential, Stable Catholyte for Neutral Aqueous Organic Redox Flow Batteries”为题发表于国际知名期刊Advanced Functional Materials。课题组博士研究生胡博和助理教授范豪为共同第一作者,宋江选教授为唯一通讯作者,西安交通大学为论文唯一通讯作者单位。这也是该团队在继前期六元环哌啶类氮氧自由基(ACS Appl. Mater. Interfaces, 2020, 12, 39, 43568)和吩噁嗪类碱性兰(Chem. Commun., 2020, 56, 13824)水性液流电池电极材料研究工作之后的又一重要进展。
① 凡本站注明“稿件来源:金宝搏188入口 ”的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本站协议授权的媒体、网站,在下载使用时必须注明“稿件来源:金宝搏188入口 ”,违者本站将依法追究责任。
② 本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。